

Nested Temporal Model (NTM): A Three-Tiered Framework for Understanding Time

Author: Rashida Lovely

Date: 11/30/2025

1. Introduction

Time has long been a subject of scientific inquiry, yet its nature remains both mysterious and foundational. Classical physics treats time as an absolute backdrop, while relativity demonstrates that time is local and observer-dependent. Recent relational interpretations of quantum mechanics suggest that time emerges from interactions between systems.

The Nested Temporal Model (NTM) integrates these perspectives, proposing a **three-tiered structure of time**:

1. **Relative / Local Time** (T_r) — dependent on individual observers and local physical processes
2. **Relational / Micro Time** (T_{rel}) — emerges from causal interactions between systems
3. **Absolute / Macro Time** (T_a) — anchored to cosmological parameters, weighted by local structures

This model provides a framework for reconciling observer-dependent clocks, relational causal networks, and global temporal coherence.

2. Literature & Context

Relative Time (T_r)

- Einstein's Special and General Relativity demonstrate that time is not universal.
- Observers in motion or varying gravitational fields experience **different local durations**.

Relational Time (T_{rel})

- Rovelli's Relational Quantum Mechanics posits that facts exist only relative to observers.
- Causal Set Theory (Sorkin) formalizes time as a partially ordered network of events.
- Distributed computing analogues (Lamport clocks, vector clocks) handle observer-dependent event ordering.

Absolute / Macro Time (T_a)

- Cosmological time is naturally measured via the universe's **scale factor** $a(t)$ and **expansion rate** $H(t)$.
- Macro-level temporal ordering emerges from these parameters, potentially weighted by local mass-energy distribution.

Innovation: Existing frameworks treat these layers separately. NTM **unifies relative, relational, and absolute time** in a coherent, nested structure.

3. Formal Definitions

3.1 Relative / Local Time (T_r)

$$\Delta t' = \frac{\Delta t}{\sqrt{1 - v^2/c^2}}$$

- Local measurement of time varies with velocity v and gravitational potential.

3.2 Relational / Micro Time (T_{rel})

Must quantify temporal coherence between systems i and j :

$$C_{rel}(i, j) = f(\text{interaction}_{i,j}, \text{distance}_{i,j}, \text{environment}_{i,j})$$

- Provides ordering for events affecting multiple systems.

3.3 Absolute / Macro Time (T_a)

Weighted absolute time based on cosmology:

$$T_a = \int_{t_0}^t w(t') \frac{da(t')}{H(t')a(t')}$$

Where:

- $a(t)$ = scale factor
- $H(t) = \dot{a}/a$ = Hubble parameter
- t_0 = reference cosmic time (e.g., Big Bang)
- $w(t') = 1 + \frac{\rho_{\text{local}}(t')}{\bar{\rho}(t')}$ = weighting for local mass-energy

4. Illustrative Example: Solar System Model

The solar system provides a tangible way to visualize nested time:

1. Local Time (T_r)

- Each planet experiences its own orbital period, rotation, and gravitational time dilation.
- Mercury's day differs from Jupiter's; each planet has a distinct local clock.

2. Relational Time (T_{rel})

- Planets interact gravitationally.
- Events such as planetary alignments, eclipses, and comet passages are **ordered relationally** across the solar system, independent of each planet's local clock.

3. Absolute Time (T_a)

- All planetary motions exist within the larger cosmological frame defined by the universe's expansion.
- The absolute ordering of solar system events can be mapped to **cosmological time**, incorporating large-scale structure and scale factor

weighting.

4. Table

Expanded Solar System Example (Visual / Table Narrative)

We can create a table mapping local, relational, and absolute time for each planet:

Planet	Local Time (T_r)	Relational Time (T_{rel})	Absolute Time (T_a)
Mercury	58.6 Earth days (rotation)	Alignments, conjunctions with Venus and Earth	Cosmic-scale timestamp mapped to scale factor $a(t)a(t)a(t)$
Venus	243 Earth days (rotation)	Interaction network of gravitational perturbations	Cosmic-scale timestamp weighted by local solar system mass-energy
Earth	24 hours (rotation)	Moon phases, eclipses, planetary conjunctions	Same as above
Mars	24.6 hours	Orbit-relative conjunctions	Same as above
Jupiter	9.9 hours	Interaction with moons, planetary resonance network	Same as above
Saturn	10.7 hours	Ring-moon interactions	Same as above
Uranus	17.2 hours	Tilted rotational interactions	Same as above

Neptune	16.1 hours	Gravitational effects on outer solar system	Same as above
Pluto	153 hours	Dwarf planet resonance interactions	Same as above

Insight: Even though each planet's local time differs, relational interactions and absolute time provide a **coherent global ordering**.

5. Operationalization

- **Local Time** (T_r): measured with individual clocks and sensors.
- **Relational Time** (T_{rel}): determined via **coexistence coefficients** in networks of interacting systems.
- **Absolute Time** (T_a): derived from cosmological parameters and weighted local structures.

Example: In a distributed sensor network, local clocks (T_r) may disagree. Relational coherence (T_{rel}) aligns events within the network. Weighted absolute time (T_a) maps all events onto a universal timeline.

6. Conceptual Diagram (Descriptive)

1. **Innermost Layer:** Local clocks (T_r)
2. **Middle Layer:** Networked interactions (T_{rel})
3. **Outermost Layer:** Global cosmological time (T_a)

The solar system example can be overlaid here: each planet as a local clock, interactions forming relational links, all embedded in the universal expansion timeline.

7. Significance

- Reconciles **relative, relational, and absolute views of time**.
- Offers a framework for **temporal consistency in distributed systems, sensor networks, and multi-agent environments**.
- Provides a new lens for studying **causality, simultaneity, and temporal emergence** in physics and computation.
- Bridges the gap between **observable phenomena and macrocosmic ordering**, opening paths for experimental validation.

8. Conclusion

The Nested Temporal Model provides a **coherent, testable, and conceptually elegant framework** for understanding time across scales. By integrating local, relational, and cosmological perspectives, it unites existing physical theories while introducing a novel global temporal anchor.

References

Einstein, A. (1905, 1916) — Special and General Relativity

Rovelli, C. (1996) — *Relational Quantum Mechanics*

Sorkin, R. (2003) — *Causal Set Theory*

Lamport, L. (1978) — *Time, Clocks, and the Ordering of Events*

Tegmark, M. (2008) — *The Mathematical Universe*

Barbour, J. (1999) — *The End of Time*